Часто сталкиваясь с тем, что современными предприятиями руководят экономисты и управленцы по образованию, я ставлю перед собой цель рассказать простыми словами о применении индукционного нагрева в промышленности. За семь лет работы с индукционным промышленным оборудованием, у меня скопился большой объем информации по индукционному нагреву. Надеюсь, она будет полезна и руководителям и техническим специалистам.
Для понимания, что такое индукционный нагрев, придется немного рассказать о физике этого процесса. Любая индукционная установка представляет собой преобразователь промышленного электрического тока в ток более высокой частоты, главной особенностью этого преобразования является то, что индукционный нагрев металлов осуществляется только на резонансной частоте. Параметры резонанса в основном задаются индуктивностью и емкостью самой установки. Однако, к индукционным установкам подключают индукционные катушки, так называемые индукторы разной конструкции, которые имеют различную индуктивность. Да к тому же металлы в процессе нагрева меняют свои свойства. Вот и приходится индукционной установке постоянно подстраивать собственную резонансную частоту, что бы работать с максимальным КПД.
Ранее промышленность использовала ламповые и машинные преобразователи частоты, которые автоматически не могли подстраивать резонансную частоту генерации. Ее изменяли с помощью коммутации конденсаторных батарей, что было крайне неудобно. Современные индукционные генераторы оснащают ключевыми элементами на базе тиристоров и транзисторов. Транзисторные генераторы могут менять частоту резонанса в достаточно широких пределах, иногда в несколько раз. Что позволяет подключать к ним индукторы с различным количеством витков. Тиристорные генераторы так же могут подстраивать резонансную частоту в пределах нескольких десятков процентов.
Главной задачей индукционного нагревателя является создание в индукторе электрических токов высокой частоты и большой силы. В зависимости от поставленных задач и количества витков индуктора напряжение на индукторе может достигать 1500 вольт и токов в несколько сотен ампер при последовательном резонансе. Или 20-100 вольт при токах до 12.000 ампер при использовании понижающего трансформатора.
Понятно, что такие токи вызывают сильный нагрев электрических проводников, индукторов, полупроводниковых транзисторов и диодов, трансформаторов и конденсаторов самой установки. Именно поэтому большинство современных индукционных установок имеют водяное охлаждение. По сути это две взаимодействующие друг с другом системы, с одной стороны электрическая, а с другой сантехническая – водопроводная. И сбой в работе любой из этих систем приводит к выходу из строя индукционного оборудования в целом. Ремонт индукционных установок стоит недешево. Сборки транзисторов, так называемые IGBT модули, стоят до 10 тысяч рублей, а их иногда выгорает несколько. Выгорание обмоток высокочастотных трансформаторов требует ремонта стоимостью в десятки тысяч рублей. Могу дать совет, купите для своей индукционной установки мощный насос и хорошую систему охлаждения и будете избавлены от множества неприятностей в будущем.
После того, как генератор возбудил в индукторе электрический ток, который в свою очередь создал в нем магнитное поле высокой интенсивности, встает задача максимально передать эту энергию в нагреваемую металлическую деталь. Понятно, что чем ближе деталь располагается к виткам индуктора, тем большее количество энергии в нее попадет. Причем лучшими условиями для нагрева является расположение детали внутри индуктора. Магнитное поле индуктора возбуждает в любом металле вторичные вихревые токи, их еще называют токи Фуко, которые в свою очередь интенсивно нагревают поверхность токопроводящей детали. Глубина этого нагрева зависит от частоты генерации и, как правило, составляет от 0,1 мм до 10 мм. Металлы, обладающие ферромагнитными свойствами, в том числе железо и никель, нагреваются не только за счет токов Фуко, но и за счет перемагничивания ферромагнитных доменов. Однако по достижении температуры точки Кюри, примерно 760 градусов Цельсия, ферромагнитная составляющая индукционного нагрева исчезает и остается только нагрев за счет токов Фуко. Причем, интенсивность этого нагрева растет с ростом температуры, т.к. увеличивается омическое сопротивление металла.
Когда же необходим индукционный нагрев на глубины более 10 мм, например, объемный нагрев для горячей штамповки, дальнейший нагрев вглубь металла происходит только за счет теплопередачи. А это процесс достаточно медленный, например, для нагрева стальной заготовки диаметром 40 мм на частоте 6 кГц с разницей температуры по всему объему металла в 100 градусов Цельсия потребуется 58 секунд. Если же есть потребность нагревать большее количество заготовок, соответственно большее их количество должно нагреваться одновременно. Такое индукционное оборудование называется Индукционный кузнечный нагреватель, сокращенно ИКН.
Индукционный нагрев всегда значительно эффективнее и быстрее остальных видов нагрева за счет того, что максимальная температура создается не на поверхности детали, а на глубине проникновения электрического поля, в месте перехода индукционного нагрева в нагрев с помощью теплопередачи. А глубина проникновения электрического поля зависит от частоты генерации индукционной установки. И чем она ниже, тем глубже расположена эта граница, и тем интенсивнее идет прогрев вглубь металла. На современных среднечастотных транзисторных индукционных установках с частотой генерации 3-5 кГц (после прохождения точки Кюри) глубина горячего проникновения индукционного поля в металл достигает 10 мм.
Инструкция по эксплуатации индукционного оборудования обычно содержит десяток - другой страниц, а вот для того, что бы научиться делать хорошие индукторы, нужно изучить не одну книгу и приобрести практические навыки. Обычно через несколько лет после покупки предприятием индукционной установки, силами своих специалистов изготавливается несколько десятков различных по конструкции индукторов для решения различных задач индукционного нагрева. Компания «Мосиндуктор», которую я возглавляю, не только щедро делится со своими покупателями литературой по индукционной тематике, но и проводит единственные в РФ «Курсы повышения квалификации высокочастотников – термистов». На этих курсах одной из главных является тема изготовления индукторов для решения конкретных технологических задач и согласование их параметров с различными индукционными установками.
Как уже упоминалось, индуктор хорошо нагревает деталь тогда, когда она расположена внутри индуктора. Это происходит потому, что распределение электрического тока по сечению индуктора неоднородно. Высокочастотные токи в индукторе вытесняются магнитным полем на поверхность проводника, именно поэтому индукторы делают из медной трубки, с толщиной стенки 1-3 мм. При этом индуктор обязательно охлаждают водой, ведь токи в тысячи ампер, протекающие через него, вызывает интенсивный нагрев.
На распределение тока в индукторе влияет также эффект близости и производный от него кольцевой эффект. Именно они приводят к концентрации электрического тока на поверхностях индуктора обращенных друг к другу и внутри кольцевого индуктора. Поэтому бывает достаточно сложно эффективно нагреть внутренние отверстия и плоскости. Однако современные магнитодиэлектрики, так называемые «магнитные зеркала», отлично справляются с задачей по вытеснению электрического тока в индукторе на нужную сторону. И позволяют решать сложнейшие задачи индукционного нагрева высокоэффективно и на малых мощностях индукционных генераторов. Компания «Мосиндуктор» предлагает к поставке керамические магнитодиэлектрики под собственной маркой «Ферроксон».
Современные индукционные установки
В 2007 году мы предложили собственную классификацию современных индукционных транзисторных нагревателей, взамен устаревшей советской. Наша классификация прижилась и сейчас, ей пользуются десятки фирм поставщиков индукционного оборудования. Она достаточно простая первые 2-3 буквы обозначают частотный диапазон индукционной установки, а последующие цифры ее мощность.
Среднечастотные - СЧ с частотным диапазоном 5-20 кГц, Высокочастотные - ВЧ, с частотами 30-100 кГц, Сверхвысокочастотные – СВЧ с диапазоном частот 100-450 кГц. Однако если с частотным диапазоном все обычно бывает в порядке, то потребляемую мощность установки при покупке нужно проверять. Однажды мы давали экспертное заключение для арбитража на индукционную установку, мощность и соответственно стоимость которой, поставщик при продаже завысил в 2,5 раза.
Проверить реально потребляемую мощность индукционного оборудования достаточно просто. Измерьте токовыми клещами входной ток одной из трех фаз индукционной установки и разделите эту величину на полтора. Вы получите примерную потребляемую мощность индукционной установки. КПД транзисторных установок свыше 95%, а тиристорных около 92%, соответственно вы можете подсчитать выходную мощность преобразователя. Однако не стоит забывать, что в месте перехода индуктор – деталь теряется не менее 30% выходной мощности. Большая ее часть утилизируется в виде тепла водой из индуктора, а меньшая часть рассеется в пространстве в виде электромагнитного излучения.
Современные транзисторные ТВЧ установки имеют множество преимуществ. Малые габариты и вес, позволяют располагать их рядом с оборудованием последующего технологического цикла. Они экономят электроэнергию, являясь современным энергосберегающим оборудованием. Имеют пренебрежимо малую мощность холостого хода и не нуждаются в прогреве, могут работать непрерывно и даже круглосуточно. Быстро нагревают заготовки изнутри. Позволяют автоматизировать и роботизировать операции закалки и отпуска сложных деталей для автомобилестроения и станкостроения.
При пайке создают самое прочное из всех видов паяных соединений, за счет вибрации с частотой генерации флюса и припоя. Идут на замену электрическим и газовым печам, обеспечивают высокую эргономику рабочего места и комфортные условия труда. При соблюдении минимальных требований охраны труда безопасны для персонала. Низкая цена позволяет окупить индукционное оборудование всего за полгода. Имеют срок эксплуатации более 10 лет, при условии своевременного обслуживания. На них легко научиться работать, навыки можно получить всего за 10 минут.
Общие меры безопасности
Ремонт индукционных установок могут выполнять только специализированные сервисные центры и их специалисты на местах установки оборудования. Поэтому покупая оборудование, поинтересуйтесь есть ли такой сервисный центр у поставщика.
Подключение индукционных установок к сети промышленного тока выполняется электриками с соответствующей группой допуска. К работе на индукционных установках не допускаются люди с имплантированными кардиостимуляторами. К индукционным катушкам мощных кузнечных нагревателей нельзя приближаться с металлическими предметами в карманах, они могут нагреться и вызвать ожоги. Электромагнитные поля, излучаемые мощными индукторами, могут являться источником электрических наводок в соседних металлоконструкциях. Во избежание поражения электрическим током все рамы, транспортеры и подставки должны быть надежно заземлены.
Мощное электромагнитное поле является одним из факторов, вызывающим предрасположенность человека к онкологическим заболеваниям. По возможности сократите время пребывания в непосредственной близости с источником электромагнитного поля. Таким источником в первую очередь являются индукционные катушки мощных плавильных печей и индукционных кузнечных нагревателей. Сила воздействия электромагнитного поля напрямую связана с частотой излучения и его мощностью. Чем выше мощность и частота, тем опаснее излучение. Советую термистам и плавильщикам, работающим на ТВЧ установках, иногда менять свою профессию.
Своевременная очистка от цеховой пыли
Современные индукционные установки охлаждаются не только водой. Часть электронных компонентов охлаждается с помощь потока воздуха, создаваемым вентилятором – кулером. Цеховой воздух, как правило, содержит много пыли. Именно она затягивается вентилятором внутрь прибора и оседает на стенках, на сильноточной и слаботочной электронике. Техническая пыль электропроводна, особенно на высоких частотах. Если периодически раз в 3-4 месяца не очищать индукционную установку и высокочастотный трансформатор от пыли, можно гарантировать электрический пробой по пыли через 2-3 года работы.
Электрический пробой начинается по пыли на высоковольтной части прибора, мгновенно происходит ионизация воздуха и он становится электропроводным. В приборе образуется шар высокотемпературной плазмы, сжигающий не только электронику, но и медные шины в палец толщиной. Прожигается корпус, взрываются конденсаторы. После подобного пробоя требуется ремонт по стоимости соизмеримый с половиной стоимости самого прибора. Периодическая очистка от пыли – единственный способ поддержания многолетней работоспособности индукционного оборудования. Удаление пыли, совсем не сложная операция. Пыль следует удалять с помощью мягкой щетки пылесоса, а в труднодоступных местах, например с обмоток ВЧ трансформатора, с помощью продувки сухим сжатым воздухом.
Лучше всего полностью избавиться от пыли, скапливающейся внутри индукционной установки с помощью особой конструкции системы охлаждения. Мощные установки, выпускаемые по евростандарту, имеют пылезащищенные шкафы и встроенные системы водяного охлаждения внутреннего воздуха. Они состоят из радиатора, по которому циркулирует вода из системы водяного охлаждения установки и вентилятора, который обеспечивает циркуляцию охлажденного воздуха через радиатор и пространство шкафа с электронными компонентами. Напротив сильно греющихся конденсаторов устанавливают дополнительные вентиляторы - кулеры.
Конечно, выводы каждый сделает сам. Кто-то предпочтет недорогое индукционное оборудование и будет за ним периодически ухаживать. А кто-то купит надежное и дорогое оборудование. Дополнительные затраты сторицей окупятся многолетней эксплуатацией без разорительных ремонтов и дополнительных затрат на обслуживание.
Обращайтесь в компанию «Мосиндуктор», у нас есть оборудование на любой вкус и кошелек.
В следующей статье я расскажу вам об особенностях использования индукционных установок различного частотного диапазона и системах охлаждения для индукционного оборудования.
Автор статьи директор компании «Мосиндуктор»
(С) 2014 Кучеров Вячеслав Васильевич
Авторские права защищены.
Гарантируется судебное преследование
за размещение статьи на любом сайте
кроме www.mosinductor.ru
Анонс цикла статей «Индукционный нагрев в промышленности»
Будут рассмотрены следующие темы: физические основы индукционного нагрева металлов, техника безопасности и обслуживание индукционного оборудования, виды индукционных установок и особенности их применения, индукционные катушки – индукторы, магнитодиэлектрики – концентраторы магнитного поля, системы охлаждения индукционных установок. Закалочные станки и автоматические закалочные линии для массовой термообработки деталей в автомобилестроении.
Будет рассказано о способах использования индукционного нагрева для решения множества технологических задач современного производства.
В области термообработки, нормализации сварных швов, пайки, объемного нагрева для горячей штамповки, плавки, кристаллизационной вытяжки из расплава, термопосадки, горячего вальцевания, гибки, сварки металлов и пластмасс, производства прямошовных труб и отводов, выращивания кристаллов, нагрева газовых смесей, плавки образцов для рентгенографического анализа, подогрева труб и кабелей перед нанесением изоляции, сжигание геттера в вакуумных лампах, сжигания металлических плавней, поджигание самоспекающихся смесей, отделение металла от резины и много другого…